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1. Introduction

Image geometrical moments are region-based integral fea-
tures useful for describing the image. The moment invar-
iants are combinations of the geometrical moments. They
are invariant to scaling, rotation, and other distortions of
the image. The orthogonal moments use orthogonal poly-
nomials as the kernel functions in the moment integral.
The image moments, moment variants, and orthogonal
moments are basic image descriptors and extensively
employed for image analysis, shape description, image
indexing, annotation, retrieval, registration, matching,
object detection, biometric recognition, high level vehicle
navigation, image authentication, and image watermark-
ing. Compared with other image descriptors, the moment-
based descriptors have rigorous mathematical bases and
show the best performance among the low dimensional
descriptors for two-dimensional (2D) images[1].
The first moment invariants have been introduced by

Hu[2] more than half century ago. After a long period of
quiet development in the image moment theories, the
research on the moment-based methods and their applica-
tions found a fast growing period since the 1990s with
thousands of journal papers and book chapters published
each year in the last ten years. A number of new invariant
moments and orthogonal moments have been introduced,
showing better performance for image description. In the
same time, an important part of the research effort has
been devoted to improving the speed and accuracy of
the moment feature calculation.
In this Review, we give a short historic overview on the

development of the image moment theories involving
the moment invariants, the orthogonal moments, and
the discrete orthogonal moments. It is impossible to cover

the whole area of the image moments in a short overview.
Moreover, several excellent textbooks on the image
moments theory and applications have been recently pub-
lished[3–6]. We describe several selected representative
moments, their performance, and the ideas behind their
development. We analyze the information suppression
drawback in the Zernike moments, which was not ad-
dressed in a recent and more complete overview[7]. We
present a moment family table. We also propose new cri-
teria for assessing performance among the numerous
orthogonal polynomials. This Review, however, does
not cover issues of the computation speed and numerical
stability of the image moments nor their applications.

2. Moment invariants

The geometrical moments of a 2D image f ðx; yÞ in the
rectangular coordinate system are defined as

mp;q ¼
ZZ

xpyqf ðx; yÞdxdy; (1)

where the moment orders p and q are positive integers.
Thus, the zero order moment represents the image’s total
energy. The first order moments specify the location of the
image centroid. The moments computed in the coordinate
system with the origin placed at the image centroid are the
central moments, which are then translation invariant.
The second order moments describe the rectangularity
and ellipticity of the image and are used to determine
the principle axes of the image[2,8]. The low-order moment
features are directly useful for the shape description in the
object detection tasks[9].
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A. Hu’s moment invariants
The moment invariants first introduced by Hu are mostly
known as a set of seven parameters, which are invariant to
rotation, scaling, and translation of the image[2]. Hu’s
moment invariants are algebraic combinations of the
geometrical moments of up to second and third orders
obtained by the algebraic invariants theory as

h1 ¼ μ20 þ μ02;

h2 ¼ ðμ20 − μ02Þ2 þ 4μ211;

h3 ¼ ðμ30 − 3μ12Þ2 þ ð3μ21 − μ03Þ2;
h4 ¼ ðμ30 þ μ12Þ2 þ ðμ21 þ μ03Þ2;
h5 ¼ ðμ30 − 3μ12Þðμ30 þ μ12Þ½ðμ30 þ μ12Þ2 − 3ðμ21 þ μ03Þ2�

þ ð3μ21 − μ03Þðμ21 þ μ03Þ½3ðμ30 þ μ12Þ2 − ðμ21 þ μ03Þ2�;
h6 ¼ ðμ20 − μ02Þ½ðμ30 þ μ12Þ2 − ðμ21 þ μ03Þ2�

þ4μ11ðμ30 þ μ12Þðμ21 þ μ03Þ;
h7 ¼ ð3μ21 − μ03Þðμ30 þ μ12Þ½ðμ30 þ μ12Þ2 − 3ðμ21 þ μ03Þ2�

− ðμ30 − 3μ12Þðμ21 þ μ03Þ½3ðμ30 þ μ12Þ2 − ðμ21 þ μ03Þ2�;
(2)

where μp;q is the central moments. The affine transform
invariant moments were also later derived from the alge-
braic invariant theory[10]. Hu’s moment invariants are
highly concentrated image features and are extensively
employed for a long period of time. However, Hu’s
moment invariants composed from the low-order geomet-
ric moments do not describe the details of the image and
suffer from information redundancy and information sup-
pression drawbacks, as first pointed out in Ref. [11]. Hu’s
moment invariants are information redundant because
the kernels xpyq in their component moments are not
orthogonal. As a consequence, an assessment of the qual-
ity of the image description by Hu’s moment invariants is
not straightforward. One does not know how many Hu’s
moment invariants should be used and how well they de-
scribe the image for a given task. The information redun-
dancy can be removed by using the orthogonal moments,
as will be discussed in Section 3.

B. Fourier-Mellin moments
The information suppression and loss in Hu’s moment in-
variants may be shown in evidence by the mathematical
equivalence between Hu’s moment invariants and the
Fourier-Mellin moments. In the polar coordinate system,
the Fourier-Mellin moments of an image f ðr; θÞ are defined
as

Mn;m ¼
Z

2π

0

Z
1

0
f ðr; θÞrn−1e−jmθrdrdθ; (3)

where the radial coordinate r is normalized for the scale
invariance, the positive integer n ≥ 1 is the radial moment
order, and the integer m is the circular harmonic order.
A rotation of the image corresponds to a translation of

the image along the angular coordinate and a phase shift
of the circular Fourier transform, whose intensity is rota-
tion invariant.

In fact, Hu’s moment invariants can be derived more
easily in the polar coordinate system as the angular
moments[12] or the Fourier-Mellin moments[13,14]. It can
be shown[13] that Hu’s moment invariants are equivalent
to a special set of the Fourier-Mellin moments with the
circular harmonic orders m ¼ 0–3 and the radial moment
order n ¼ 2, 3. It is well known that the low circular har-
monic orders m ¼ 0–3 do not describe angular variations
in detail. In general, the circular harmonic orders
m ¼ 0; 1;…;M , up to M > 10 are required to reconstruct
an image from its circular harmonic functions with accept-
able detail[15]. On the other hand, the high-order mono-
mials rn suppresses contribution to the moments from
the central part of the image and heavily weights the
contribution of the background outside the object in
the image. The information suppression drawback of
the moment invariants can be overcame by using the
Fourier-Mellin moments of low radial moment orders.

C. Complex moments
The complex moments are defined in the Cartesian coor-
dinate system but with the complex coordinate kernels
(x þ jy) and (x − jy) instead of x and y, as in Eq. (1)[11,16].
The Fourier-Mellin moments in the polar coordinate
system are equivalent to the complex moments in the
rectangular coordinate system but with some fractional
half-integer orders as

Mn;m ¼
Z

2π

0

Z
∞

0
f ðr;θÞrn−1e−jmθrdrdθ

¼
Z

∞

−∞

Z
∞

−∞
f ðx;yÞðxþ jyÞðn−mÞ∕2ðx− jyÞðnþmÞ∕2dxdy;

(4)

so that the Fouirer-Mellin moments can be computed
in the rectangular coordinate system via the complex
moments without transforming the image from the
Cartesian coordinate system to the polar coordinate
system. The complex moments were also used to derive
the affine invariant moments[4].

D. Wavelet moments
The wavelet moments are defined in the polar coordinate
system as[17,18]

Fa;b;m ¼
Z

2π

0

Z
1

0
ψa;bðrÞe−jmθf ðr; θÞrdrdθ; (5)

where the circular Fourier transform gives the rotation
invariance, and the wavelet transform is applied in the
radial coordinate with the mother wavelets such as the
Gabor wavelet, Mexican-hat wavelet, or the cubic
B-spline function, the latter is shown as
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ψðrÞ¼ 4αnþ1��������������������
2πðnþ1Þp σ cosð2πf 0ð2r−1ÞÞexp

�
−

ð2r−1Þ2
2σ2ðnþ1Þ

�
;

(6)

where n ¼ 3, α ¼ 0.697, f 0 ¼ 0.409, and σ2 ¼ 0.561. The
wavelet transform is a convolution of the image’s circular
harmonic function

f mðrÞ ¼
Z

2π

0
e−jmθf ðr; θÞdθ; (7)

with the wavelets, which are scaled, and translated
mother wavelets that are shown as

ψa;bðrÞ ¼
1���
a

p ψ

�
r − b
a

�
; (8)

where the discrete scaling factor is a ¼ ð1∕2Þp, the discrete
translation factor is b ¼ ðq∕2Þð1∕2Þp, and p and q are pos-
itive integers. The continuous wavelets such as the cubic
B-spline functions are bandpass filters[19]. By adaptively
choosing the appropriate scale a, the wavelet transform
can highlight the local features such as edges in the image.
However, the wavelet moments as defined in Eq. (5) are
not orthogonal and, therefore, can be used as image fea-
tures for the image description but not for the image
reconstruction. Moreover, the wavelet moments are not
scale invariant. The image must be resized to a fixed size
before computing the wavelet moments[17,18].

3. Orthogonal moments

The orthogonal moments are an expansion of the image
into the orthogonal polynomial bases. The orthogonal
moments are information independent from each other,
allowing the image reconstruction for assessing the quality
of the image description.

A. Rotation-invariant orthogonal moments
The orthogonal polynomials result from the power series
solutions of the ordinary differential equations with the
orthogonality of the polynomials related to the Sturm-
Liouville forms of the differential equations plus the
boundary conditions. They are referred to as the special
functions and are given special names because of their
frequent uses. On the other hand, the orthogonal polyno-
mials can be easily generated using the Gram-Schmidt
orthonormalization, so that there can be an infinite num-
ber of orthogonal polynomials. The well-known orthogo-
nal polynomials include the Jacobi, Hermite, Laguerre,
and Bessel polynomials. The interrelations between
the polynomials exist. For instance, the Gegenbauer,
Legendre, Chebyshev, and Zernike polynomials are special
cases of the Jacobi polynomials, which are the solutions of
the hypergeometric differential equations.
Many orthogonal polynomials are proposed as the bases

for the image analysis. For the 2D expansion of an image
in the polar coordinate system, the radial orthogonal poly-
nomials are the radial basis, and the Fourier kernels

expðjmθÞ are used for the circular harmonic analysis.
As pointed out by Bhatia and Wolf[20,21], for the rotation
invariance in the form, the circular Fourier kernel is a
unique solution to be included as the basis function.
The scale invariance is achieved by using the normalized
radial coordinate.

1. Zernike and Pseudo-Zernike moments
The Zernike moments are orthogonal on the unit circle.
The Zernike radial polynomials play a dominant role
for the aberration characterization in the optical design.
The Zernike moments were proposed in 1980 for image
analysis[22] as

Anm ¼ n þ 1
π

Z
2π

0

Z
1

0
RnmðrÞ expð−jmθÞf ðr; θÞrdrdθ;

(9)

where the Zernike radial polynomials are

RnmðrÞ

¼
Xðn−jmjÞ∕2

s¼0

ð−1Þs ðn−sÞ!
s!ððnþjmjÞ∕2−sÞ!ððn− jmjÞ∕2−sÞ!r

n−2s;

(10)

wherem is the circular harmonic order, and n is the degree
of the Zernike polynomial. The Zernike moments are de-
signed to be presented in the Cartesian coordinate system,
so that the Zernike radial polynomials must not contain
powers of r smaller than the circular harmonic order,
n ≥ jmj and n − jmj are even[20]. In the Zernike moments,
each term of the radial power in RnmðrÞ corresponds to a
radial moment of a specific order, so that the Zernike
moments can be computed as the algebraic combinations
of the Fourier-Mellin moments.

Bhatia and Wolf derived[20] another orthogonal set of
polynomials in x and y, which contains only the powers
of r higher than circular harmonic order n ≥ jmj, but with
the condition for even n − jmj removed[20]. This moment
set is now referred to as the pseudo-Zernike moments[23].
When high circular harmonics of the order m are used
to represent the image of the angular variation in the
range ½0; 2π�[15], the Zernike and pseudo-Zernike moments
with the radial polynomial degrees n ≥ jmj must suffer
from severe information suppression drawback by the high
radial moment orders.

2. Orthogonal Fourier-Mellin moments
The orthogonal Fourier-Mellin moments[24] are designed to
avoid the information suppression issue in the Zernike
moments. The orthogonal Fourier-Mellin moments are
defined as

Φnm ¼ 1
2πan

Z
2π

0

Z
1

0
QnðrÞ expð−jmθÞf ðr; θÞrdrdθ;

(11)
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where an ¼ ½ðn þ 1Þ, and the radial polynomials

QnðrÞ ¼
Xn
s¼0

αnsrs; with αns ¼ ð−1Þnþs ðnþ sþ 1Þ!
ðn− sÞ!s!ðsþ 1Þ! :

(12)

are obtained by the Gram-Schmidt orthogonalization of
the power series rn with n ¼ 0; 1; 2;…. The orthogonal
Fourier-Mellin moments do not need to be expressed in
the Cartesian coordinate system. Hence, the restriction
of n ≥ jmj in the Zernike and pseudo-Zernike moments
is removed. This removal of the restriction improves the
performance in the image analysis.
The Fourier-Mellin polynomials QnðrÞ have n zeros in

0 ≤ r ≤ 1, while the Zernike polynomials have ðn −mÞ∕2
duplicated roots for RnmðrÞ ¼ 0. To have the same num-
ber n of zeros, the degree of the Zernike polynomial must
be as high as 2n þ jmj. Figure 1 shows the Zernike poly-
nomials RnmðrÞ for the circular harmonic order m ¼ 10
and the degree n ¼ 10–28 with the zeros distributed in
the range of radial distance r 0.2 ≤ r ≤ 1. The closest end-
point to the origin of R28;10ðrÞ is at r ¼ 0.2. The image in-
formation in the region of the normalized radial distance
r ≤ 0.2 is then completely suppressed in this set of Zernike
moments. The set of orthogonal Fourier-Mellin radial
polynomials QnðrÞ with the degree n ¼ 0–9, independent
of m, contain oscillations with the zeros distributed over
the radial coordinate range of 0.04 ≤ r ≤ 1, as shown in

Fig. 1(b). Thus, the set of orthogonal Fourier-Mellin
moments favors the analysis of the image, especially for
the central part of the image or the small scale object
in the unit circle, which occurs in the context of the scale
invariant pattern recognition. Figure 2 shows a capital
letter E reconstructed from a maximum of 64 orthogonal
Fourier-Mellin moments and those from the Zernike
moments. The former in Fig. 2(c) shows much better
detail than the latter in Fig. 2(b).

The key idea behind the design of the orthogonal
Fourier-Mellin moments is to completely separate the ra-
dial polynomials from the circular Fourier kernel, and to
avoid the constraint that the radial moment orders should
be higher than the circular harmonic orders. Based on this
idea, many new orthogonal radial polynomials can be pro-
posed, such as Chebyshev-Fourier, Jacobi-Fourier, and
Bessel-Fourier polynomials. All the moments of this type
can be computed as algebraic combinations of the Fourier-
Mellin moments. The latter can be computed from the
equivalent complex moments as shown in Eq. (4) without
the transformation of the image from the rectangular to
the polar coordinate system.

3. Chebyshev-Fourier moments
The shifted Chebyshev polynomial of the second kind,
which is orthogonal in the interval [0,1], is combined with
the circular Fourier kernel to form the kernel of the
Chebyshev-Fourier moments as[25]

ϕnm ¼ 1
2π

Z
2π

0

Z
1

0
RnðrÞ expð−jmθÞf ðr; θÞrdrdθ; (13)

with n ¼ 0; 1; 2…;m ¼ 0;�1;�2;… and

RnðrÞ ¼
���
8
π

r
½wðrÞ�1∕2r−1∕2U �

nðrÞ; (14)

with shifted Chebyshev polynomials of the second kind

U �
nðrÞ ¼

X½n∕2�
k¼0

ð−1Þk ðn − kÞ!
k!ðn − 2kÞ! ½2ð2r − 1Þ�n−2k ; (15)

which are orthogonal over the range 0 ≤ r ≤ 1 as

Fig. 1. Orthogonal radial polynomials: (a) Zernike polynomials
with the degrees n ¼ 10–28 for circular harmonic order m ¼ 10,
(b) orthogonal Fourier-Mellin polynomials with the degrees
n ¼ 0–9.

Fig. 2. (a) Original image of a letter E in the unit disk; (b) recon-
structed from first 64 orthogonal Fourier-Mellin moments Φn;m

with n, m ¼ 0–7; (c) reconstructed from Zernike moments Rn;m

with circular harmonic orders m ¼ 0–7 and for each m using the
eight lowest degrees, satisfying n ≥ jmj þ 2.
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Z
1

0
U �

nðrÞU �
kðrÞwðrÞdr ¼ π

8
δnk ; (16)

where δnk is the Kronecker symbol, and wðrÞ ¼ ðr − r2Þ1∕2
is the weight function. As shown in Fig. 3, RnðrÞ possesses
n zero points evenly distributed over the interval [0,1].
The oscillation amplitude of the RnðrÞ of various degrees
n are close to constant in a large portion of the radial in-
terval [0,1], except that when r tends to be zero, RnðrÞ
tends to be high absolute values, as shown in Fig. 3. This
can be a potential drawback. Experiments showed[25]

that the performance for describing an image of the
Chebyshev-Fourier moments is similar as that of the
orthogonal Fourier-Mellin moments[25].

4. Generic Jacobi-Fourier moments
The Jacobi-Fourier moments are referred to as the generic
orthogonal moments[26] with the kernel composed of the
radial Jacobi polynomial and the angular Fourier complex
exponential kernel, and are defined as

Φnm ¼ 1
2π

Z
2π

0

Z
1

0
Jnðp; q; rÞ expð−jmθÞf ðr; θÞrdrdθ;

(17)

where the radial Jacobi polynomials are generated by the
orthogonalization of the natural power sequence of the
radial coordinate with the weighting function[20,27] as

wðp; q; rÞ ¼ ð1− rÞp−qrq−1; (18)

where p− q > −1; q > 0, such as

Z
1

0
Gnðp; q; rÞGkðp; q; rÞwðp; q; rÞdr ¼ bnðp; qÞδnk ; (19)

and the radial Jacobi polynomials are

Gnðp; q; rÞ ¼
n!ΓðqÞ
Γðn þ pÞ

Xn
s¼0

ð−1Þn−s Γðn þ pþ sÞ
ðn − sÞ!s!Γðq þ sÞ r

s;

(20)

which become, after the normalization,

Jnðp; q; rÞ ¼ Gnðp; q; rÞ
�������������������������������������������
wðp; q; rÞ∕bnðp; q; rÞ

p
: (21)

where the normalization constant is

bnðp; qÞ ¼
n!Γðn þ p− q þ 1Þ½ΓðqÞ�2
ð2n þ pÞΓðn þ pÞΓðn þ qÞ : (22)

It can be shown that the Jacobi-Fourier moment corre-
sponds to the Legendre-Fourier moments with p ¼ q ¼ 1
and the unit weighting function, the Chebyshev-Fourier
moments with p ¼ 2 and q ¼ 3∕2, and the orthogonal
Fourier-Mellin moments with p ¼ q ¼ 2 and the weight-
ing function equal to r [26]. The Zernike radial polynomial
corresponds to the Jacobi radial polynomial as
rmJkðp; q; r2Þ with p ¼ q ¼ m þ 1, where m is the
circular harmonic order in the Zernike moments, and
k ¼ ðn −mÞ∕2. The pseudo-Zernike radial polynomial
corresponds to the Jacobi radial polynomial Jkðp; q; rÞ
with p ¼ 2m þ 2, q ¼ m þ 2 and k ¼ n −m[3]. Therefore,
the Jacobi-Fourier moments provide a generic framework
to express the rotation-invariant orthogonal moments.
The common formulation is a benefit for the performance
comparison and analysis of the orthogonal moments and
for searching prime orthogonal moments.

5. Bessel-Fourier moments
The Bessel-Fourier moments were introduced recently,
which are defined as[28]

Bnm ¼ 1
2παn

Z
2π

0

Z
1

0
JvðλnrÞ expð−jmθÞf ðr; θÞrdrdθ;

(23)

where JvðλnrÞ is the Bessel radial polynomials of order v of
the first kind, and λn is the nth zero of JvðλnÞ ¼ 0. The
Bessel polynomials of the same order v are orthogonal over
the radial interval [0,1], such as

Z
1

0
JvðλnrÞJvðλkrÞdr ¼ αnδnk ; (24)

where αn ¼ ½Jvþ1ðλnÞ�2∕2 is the normalization constant.
Figure 4 is a plot of the Bessel function v ¼ 1. The Bessel
polynomials of the first kind J1ðλnrÞ tend to be zero at
both ends of the radial interval [0,1] and show a slow varia-
tion of the oscillation amplitude over the radial range [0,1],
as shown in Fig. 4. Only in the range of r close to r ¼ 0, the
oscillation amplitudes are doubled.

Compared to the orthogonal Fourier-Mellin polyno-
mials and the shifted Chebyshev polynomials, both of
which tend to have high values when r tends to be zero,
as shown in Figs. 1 and 3, the Bessel-Fourier moments
show a better performance for image analysis. They also
are better than the Zernike moments, as the Zernike
moments show a sharp increase to the unit when r tends
to be r ¼ 1, as shown in Fig. 1(a).

Fig. 3. Shifted Chebyshev polynomial RnðrÞ with n ¼ 1, 2, 9, 10,
[25]
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6. Radial-Harmonic-Fourier transform
The radial-harmonic-Fourier moments[29], or polar har-
monic transform[30,31], includes the Fourier harmonic
analysis in both the radial and angular coordinates and
are defined as

ϕnm ¼ 1
2π

Z
2π

0

Z
1

0
TnðrÞ expð−jmθÞf ðr; θÞrdrdθ: (25)

where the radial kernels TnðrÞ are the orthogonal triangu-
lar functions, such asTnðrÞ ¼ sin½ðn þ 1Þπr] for the odd n,
and TnðrÞ ¼ cosðnπrÞ for the even n, or the complex
exponential functions such as TnðrÞ ¼ expðj2πnr2Þ or
TnðrÞ ¼ expðjnrÞ. In all cases, the TnðrÞ should be nor-
malized, respectively. The corresponding transforms are
referred to as the radial-harmonic-Fourier moments[29],
the polar harmonic transform[30], and the exponent-
Fourier moments[31]. The angular radial transform, the
polar complex exponential transform, the polar cosine
transform, and the polar sine transform also belong to this
group[31–33]. As the Fourier kernels have uniform distribu-
tions of the zeros and a constant oscillation amplitude
over the interval 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, this type of
transform shows a superior performance over the other
rotation-invariant orthogonal moments with radial poly-
nomial kernels[34].
The radial-harmonic-Fourier moments are not scale

invariant. An image must be rescaled to a given size before
computing the moments. Moreover, the radial-harmonic-
Fourier moments should preferably be referred to as the
radial-harmonic-Fourier transforms, as the moments are
essentially formulated with the monomial and polynomial
kernels. Moreover, the moments with the radial polyno-
mials can achieve the scale invariance by using the nor-
malized radial coordinate.

B. Orthogonal moments in the Cartesian coordinate system
There are an infinite number of complete sets of orthogo-
nal polynomials. Many of them were proposed as the
kernels of the orthogonal moments for 2D images in the
Cartesian coordinate system. The orthogonal moments
in this category include the Legendre moments[22,35],

the Gegenbauer moments[36,37], the Gaussian-Hermite
moments[38–40], etc. Defined in the Cartesian coordinate
system, these moments enjoy the orthogonality of the
orthogonal polynomials in x and y in the interval
½−1; 1� or [0,1] for image analysis and reconstruction. They
can also be scale invariant when using the scaling factor to
normalize the coordinates.

A new type of the orthogonal moments uses two differ-
ent polynomials as the basis for each dimension in the
Cartesian coordinate system separately, such as the
Chebyshev-Gegenbauer and the Gegenbauer-Legendre
moments. These moments are called separable mo-
ments[41,42].

The orthogonal moments in the Cartesian coordinate
system are not rotational invariant by definition. How-
ever, the rotation invariance can still be introduced by
the transformation between the Cartesian and polar coor-
dinate systems.

C. Performance measures of orthogonal moments
Performances of the orthogonal moment image descriptors
have been assessed in many Letters via the image
reconstruction errors and the pattern recognition scores.
However, these merits are dependent on the selected mo-
ment orders and the testing image, and therefore are the
indirect measures. In fact, as the orthogonal moments are
the expansions of the image into the orthogonal polyno-
mial bases, the performance of the image description by
the orthogonal moments is determined directly by the
bases’ functions. In the case of rotation-invariant orthogo-
nal moments, the Fourier harmonic analysis is applied
along the angular coordinate. Hence, the performance of
the image analysis along the radial coordinate depends
uniquely on the set of the radial orthogonal polynomials.
For the image analysis, the radial polynomial set should
have a high number of real-valued zeros, a wide range
of the distribution of zeros in the whole range
0 ≤ r ≤ 1, and a constant oscillation amplitude. From in-
stance, the Zernike radial polynomials are restricted to
having high degrees, and one set of Zernike moments,
shown in Fig. 1(a), have the zeros distributed in the range
of 0.2 ≤ r ≤ 1. The orthogonal Fourier-Mellin polynomials
and shifted Chebyshev polynomials both tend to have
high values when r tends to be zero, as shown in
Figs. 1(b) and 3. Those facts represent the weakness of
these moments. The Bessel polynomials have n þ 2 zeros
distributed in the range of 0 ≤ r ≤ 1, and a slow variation
of the oscillation amplitudes, as shown in Fig. 4, so that
they can have a better performance for the image analysis.
In this sense, the radial-harmonic-Fourier transforms have
the best performance, as this is simply the Fourier har-
monic analysis in both the angular and radial dimensions.
However, they are not image moments in the mathemati-
cal sense and are not scale invariant.

Furthermore, in terms of the space-frequency space
analysis, the Fourier kernels, which are perfectly local
in frequency but are global in space, are not efficient
for describing local details in the image. The Fourier

Fig. 4. Bessel Radial polynomial J1(λnr) with n ¼ 0; 1; :::::; 9,
[28].

COL 14(9), 091001(2016) CHINESE OPTICS LETTERS September 10, 2016

091001-6



moments miss the location of an image detail, and very
high frequency orders must be involved to reconstruct a
sharp detail, such as an edge in the image. In this sense,
the wavelet moment using the Gabor transform and the
wavelet transform can be superior over the Fourier trans-
form[43]. However, the wavelet moments using the continu-
ous mother wavelets are not orthogonal.
Table 1 shows a family of the moments with the classi-

fication. However, it is regrettable to not be able to list all
image moments in Table 1 in the period of time when
many novel moments are being proposed. For a given
image description task, the choice among the available
moments should depend on the specific tasks, the re-
quested invariance, the computation performance, and
many other considerations.

D. Discrete orthogonal moments
Most orthogonal moments discussed previously belong to
continuous moments, as their bases are continuous func-
tions with their orthogonality defined by the continuous
integrals. Numerical computation of the continuous
moments requires discretization of the continuous polyno-
mials and discrete approximation of the continuous
moment integrals, which causes the errors, affecting the
accuracy of the calculation and the quality of image
reconstruction with increased computational complexity.
The discrete orthogonal moments[44–55] use discrete

orthogonal polynomials as the basis set, which satisfies
the orthogonality exactly without numerical approxima-
tion. For a smooth image intensity distribution, whose
value is known only at a set of discrete coordinate points,

the discrete polynomials pnðxÞ are also defined on these
distinct real nodes, and satisfy the discrete orthogonality
relation as

XN−1

x¼0

pmðxÞpnðxÞwðxÞ ¼ ρðnÞδmn; (26)

where 0 ≤ m; n ≤ N − 1, and ρðnÞ is the square norm of
pnðxÞ. The weight wðxÞ in the orthogonality expression
(26) of the discrete polynomials can be the Meixner,
Charlier, Krawtchouk, and Hahn weight. Thus, the dis-
crete orthogonal polynomials are uniquely determined
by the given distinct nodes support, the weights, and
the orthogonality condition, and can be built from mono-
mials by the Gram-Schmidt process.

The discrete orthogonal moments of a 2D image f ðx; yÞ
in the Cartesian coordinate system on a closed interval are
defined as

Pmn ¼
XM−1

x¼0

XN−1

y¼0

f ðx; yÞ ~pmðxÞ~pnðyÞ; (27)

where the normalized discrete polynomial bases ~pnðxÞ are
shown as

~pnðxÞ ¼ pnðxÞ
�����������������������
wðxÞ∕ρðnÞ

p
: (28)

As the discrete polynomials satisfy the orthogonal prop-
erty precisely, no approximation errors are involved in
the computation of moments. The image can be accurately

Table 1. Family of Image Moments

Non-orthogonal
moments

Moment invariants (Hu’s)
Fourier-Mellin moments

complex moments
wavelet moments

Orthogonal
moments

Continuous orthogonal
moments

Cartesian moments
Legendre moments

Gaussian-Hermite moments
Gegenbauer moments

Circular moments

Zernike moments
pseudo-Zernike moments

orthogonal Fourier-Mellin moments
Chebyshev-Fourier moments
Jacobi-Fourier moments
Bessel-Fourier moments

radial-harmonic-Fourier transform

Discrete orthogonal
moments

Cartesian moments

Tchebichef moments
Krawtchouk moments

Hahn moments
dual Hahn moments
Racah moments

Circular moments
Radial Tchebichef moments
radial Krawtchouk moments
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reconstructed from the complete set of discrete moments.
When two different discrete orthogonal polynomials serve
as the bases in x and y, separately, the moments are
separable moments such as that using the Tchebichef-
Krawtchouk, Hahn-Krawtchouk, and Charlier-Hahn
polynomials combined with Tchebichef, Krawtchouk,
Hahn, or Charlier polynomials[41,42].

1. Discrete orthogonal Tchebichef moments
The first discrete orthogonal Tchebichef (Chebyshev)
moments[44] were proposed based on the discrete orthogo-
nal Tchebichef polynomials. The discrete Tchebichef
polynomials are shown as

tnðxÞ ¼ n!
Xn
k¼0

ð−1Þn−k

�
N − 1− k
n − k

��
n þ k
n

��
x
k

�
;

(29)

satisfying the orthogonality condition with the unit
weight and the normalization constants

ρðn;NÞ ¼ N ðN 2 − 1ÞðN 2 − 22Þ � � � ðN 2 − n2Þ
2n þ 1

¼ ð2nÞ!
�
N þ n

2n þ 1

�
; n ¼ 0; 1;…N − 1: (30)

The normalized Tchebichef polynomials are

~tnðxÞ ¼ tnðxÞ∕βðn;NÞ; (31)

with the normalized constant

~ρðn;NÞ ¼ ρðn;N Þ∕βðn;N Þ2 and βðn;N Þ ¼ Nn: (32)

The discrete Tchebichef moments exhibit a superior per-
formance for image reconstruction and feature representa-
tion compared to the continuous Legendre and Zernike
moments[44].

2. Discrete orthogonal Krawtchouk moments
One of representative discrete orthogonalmoments defined
in the Cartesian coordinate system is the Krawtchouk[46]

moment, which are based on the Krawtchouk polynomials.
The kernel functions are the separable discrete orthogonal
polynomials in x and y. The discrete Krawtchouk polyno-
mials satisfy the orthogonality conditions with the
Krawtchouk weight as

wðx; p;NÞ ¼
�
N
x

�
pxð1− pÞN−x ; (33)

and the normalization constant

ρðn; p;NÞ ¼ ð−1Þn
�
1− p
p

�
n n!
ð−N Þn

: (34)

The Krawtchouk polynomials are obtained as

Knðx; p;NÞ ¼
XN
k¼0

ak;n;pxk ¼ 2F1

�
−n;−x;−N ;

1
p

�
; (35)

where x; n ¼ 0; 1; 2:::::;N , N > 0, and p ∈ ð0; 1Þ, the rFs is
the hypergeometric series, defined as

rFsða1; � � � ; ar ; b1; � � � ; bs; zÞ ¼
X∞
k¼0

ða1Þkða2Þk � � � ðarÞk
ðb1Þkðb1Þk � � � ðbsÞk

zk

k!
;

(36)

and ðaÞk is the Pochhammer symbol given by

ðaÞk ¼ aða þ 1Þ…ða þ k − 1Þ ¼ Γða þ kÞ
ΓðaÞ : (37)

The Krawtchouk moments perform better than the
Tchebichef moments in terms of the reconstruction error.
They were employed to extract local features of an image
by varying the parameter of the binomial distribution
associated with the Krawtchouk polynomials[46].

3. Discrete orthogonal Hahn moments
Two types of Hahn polynomials with different standard-
izations were used to define two types of Hahn mo-
ments[47,48], respectively. The Hahn polynomials are
expressed as

hðμ;νÞn ðx;N Þ
¼ ðN þ ν− 1ÞnðN − 1Þn

×
Xn
k¼0

ð−1Þk ð−nÞkð−xÞkð2N þ μþ ν− n − 1Þk
ðN þ ν− 1ÞkðN − 1Þk

1
k!
;

(38)

where μ; νðμ > −1; ν > −1Þ are the adjustable parameters
controlling the shape of the polynomials. The Hahn poly-
nomials satisfy the discrete orthogonal condition as

XN−1

x¼0

wðxÞhðμ;νÞm ðx;NÞhðμ;νÞn ðx;NÞ ¼ d2nδmn; (39)

with the weighting function as

wðxÞ ¼ 1
Γðx þ 1ÞΓðx þ μþ 1ÞΓðN þ ν− xÞΓðN − n − xÞ ;

(40)

and the square norm d2n has the following expression

d2n ¼
Γð2Nþμþν−nÞ

ð2Nþμþν−2n−1ÞΓðNþμþν−nÞ
×

1
ΓðNþμ−nÞΓðNþν−nÞΓðnþ1ÞΓðN−nÞ : (41)

Compared with the Tchebichef moments and the
Krawtchouk moments, the first type of Hahn moments

COL 14(9), 091001(2016) CHINESE OPTICS LETTERS September 10, 2016

091001-8



has better image reconstruction results[47]. Another type of
Hahn moments[48] is based on another form of Hahn poly-
nomials, shown as

hnðx;α;β;NÞ ¼ 3F2ð−n;nþαþ βþ 1;−x;αþ 1;−N ;1Þ;
(42)

where x; n ¼ 0; 1; 2;…;N − 1, α > −1; β > −1, or α < −N ,
β < −N , with the weighting function

wðx; α; β;NÞ ¼
�
αþ x
x

��
β þ N − x
N − x

�
; (43)

and the square norm

d2ðn; α; β;NÞ ¼ ð−1Þnðn þ αþ β þ 1ÞNþ1ðβ þ 1Þnn!
ð2n þ αþ β þ 1Þðαþ 1Þnð−N ÞnN !

:

(44)

This type of Hahn moments provides a unified under-
standing of the Tchebichef and Krawtchouk moments.
The two latter moments can be obtained as particular
cases of the Hahn moments with the appropriate param-
eter settings. This fact implies that the Hahn moments
encompass all their properties and exhibit intermediate
properties between the extremes set by the Tchebichef and
Krawtchouk moments. Besides, the Hahn moments,
as a generalization of the Tchebichef and Krawtchouk
moments, can be used for global and local feature
extraction[48].

4. Discrete orthogonal dual Hahn moments
The discrete Tchebichef, Krawtchouk, and Hahn polyno-
mials are orthogonal on a uniform lattice fx ¼ 0; 1; 2;…g.
There is another category of discrete variable polyno-
mials, which are orthogonal on a non-uniform lattice
fx ¼ xðsÞ; s ¼ 0; 1; 2;…g. For different non-uniform lattice
functions, there are different polynomials. The dual Hahn
polynomials and the Racah polynomials are two types of
discrete polynomials orthogonal on a non-uniform lattice
xðsÞ ¼ sðs þ 1Þ. Due to the finite domain of the definition,
the dual Hahn polynomials and Racah polynomials were
explored to construct the corresponding dual Hahn mo-
ments[50] and Racah moments[52]. They are defined in the
Cartesian coordinate system, and their kernel functions
are the product of two corresponding two corresponding
1D separable discrete orthogonal polynomials.
Given a uniform pixel lattice image f ðs; tÞ with a size

N × N , the dual Hahn moments[50] are defined as

Wnm ¼
Xb−1

s¼a

Xb−1

t¼a

ŵðcÞ
n ðs; a; bÞŵðcÞ

m ðt; a; bÞf ðs; tÞ; (45)

with n;m ¼ 0; 1; 2;…;N − 1, and the dual Hahn polyno-
mials wðcÞ

n ðs; a; bÞ defined as

wðcÞ
n ðs; a; bÞ

¼ ða − bþ 1Þnða þ c þ 1Þn
n!

× 3F2ð−n; a − s; a þ s þ 1; a − bþ 1; a þ c þ 1; 1Þ;
(46)

where parameters a, b, and c are restricted to
−ð1∕2Þ < a < b, jcj < 1þ a; b ¼ a þ N . The dual Hahn
polynomials satisfy the following orthogonality property

Xb−1

s¼a

ρðsÞwðcÞ
n ðs; a; bÞwðcÞ

m ðs; a; bÞ
�
Δx

�
s −

1
2

��
¼ d2nδnm:

(47)

where ρðsÞ is the weighting function

ρðsÞ ¼ Γða þ s þ 1ÞΓðc þ s þ 1Þ
Γðs − a þ 1ÞΓðb− sÞΓðbþ s þ 1ÞΓðs − c þ 1Þ ;

(48)

and d2n is the square norm

d2n ¼ Γða þ c þ n þ 1Þ
n!ðb− a − n − 1Þ!Γðb− c − nÞ : (49)

The normalized dual Hahn polynomials are

ŵðcÞ
n ðs; a; bÞ ¼ wðcÞ

n ðs; a; bÞ
���������������������������������������
ρðsÞ
d2
n

�
Δx

�
s −

1
2

��s
: (50)

The Tchebichef polynomials, Krawtchouk polynomials,
and Hahn polynomials are special cases of the dual Hahn
polynomials. Thus, the dual Hahnmoments which contain
more parameters have a generality and give more flexibil-
ity to promote the image describing ability. The dual
Hahn moments perform better than the Legendre mo-
ments, Tchebichef moments, and Krawtchouk moments
in terms of image reconstruction capability[50].

5. Discrete orthogonal Racah moments
Similar to the dual Hahn moments, for the image f ðs; tÞ
with a size N × N , the Racah moments[52] are defined as

Unm ¼
Xb−1

s¼a

Xb−1

t¼a

ûðα;βÞn ðs; a; bÞûðα;βÞm ðt; a; bÞf ðs; tÞ; (51)

with n;m¼0;1;2;…;N−1. Racah polynomials uðα;βÞ
n ðs; a; bÞ

are defined as

uðα;βÞn ðs;a;bÞ¼ 1
n!
ða−bþ1Þnðβþ1Þnðaþbþαþ1Þn

×4F3ð−n;αþβþnþ1;a− s;aþ sþ1;βþ1;

a−bþ1;aþbþαþ1;1Þ; (52)

where the parameters a; b; α and β are restricted by
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−ð1∕2Þ < a < b; α > −1;−1 < β < 2a þ 1; b ¼ a þ N :

The Racah polynomials satisfy the following orthogonality
property

Xb−1

s¼a

ρðsÞuðα;βÞn ðs; a; bÞuðα;βÞm ðs; a; bÞ
�
Δx

�
s −

1
2

��
¼ d2nδnm;

(53)

with the weight

ρðsÞ¼Γðaþsþ1ÞΓðs−aþβþ1ÞΓðbþα−sÞΓðbþαþsþ1Þ
Γða−βþsþ1ÞΓðs−aþ1ÞΓðb−sÞΓðbþsþ1Þ ;

(54)

and the square norm

d2n ¼ Γðαþ n þ 1ÞΓðβ þ n þ 1ÞΓðb− a þ αþ β þ n þ 1Þ
ðαþ β þ 2n þ 1Þn!ðb− a − n − 1Þ!Γðαþ β þ n þ 1Þ

×
Γða þ bþ αþ n þ 1Þ
Γða þ b− β − nÞ : (55)

The normalized Racah polynomials are

ûðα;βÞ
n ðs; a; bÞ ¼ uðα;βÞn ðs; a; bÞ

���������������������������������������
ρðsÞ
d2n

�
Δx

�
s −

1
2

��s
: (56)

TheRacahmoments performbetter than the Legendremo-
ments, Tchebichef moments, and Krawtchouk moments
for noise-free image reconstruction[52].

6. Rotation-invariant discrete orthogonal moments
Rotation-invariant discrete radial Tchebichef moments
defined in polar coordinate systems were proposed based
on the 1D radial discrete Tchebichef polynomials and the
circular Fourier kernel[53]. The primary advantage of the
discrete radial moments is the rotational invariance.
For an image f ðr; θkÞ, the explicit expressions of the radial
Tchebichef moments[53] are as follows:

Spq ¼
1

nρðp;mÞ
Xm−1

r¼0

Xn−1

k¼0

tp;mðrÞe−j2πqkn f ðr; θkÞ; (57)

where r ¼ 0; 1;…;m − 1, m ¼ N∕2; θk ¼ 2πk∕n, and
k ¼ 0; 1;…; n − 1, with n denoting the maximum number
of pixels along the circumference of the circle of radius m,

tp;mðrÞ¼
p!
mp

Xp
k¼0

ð−1Þp−k

�
m−1−k
p−k

��
pþk
p

��
r
k

�
; (58)

ρðp;mÞ ¼
m
�
1− 1

m2

��
1− 22

m2

�
� � �

�
1− p2

m2

�
2pþ 1

; (59)

with p ¼ 0; 1; :::::m − 1. The rotation-invariant discrete
radial Krawtchouk moments[54] were introduced in a

similar way to the radial Tchebichef moments. The kernel
functions of the radial Krawtchouk moments are products
of radial 1D Krawtchouk polynomials and angular circular
Fourier functions.

4. Conclusion

We have reviewed some major steps in the development
of the image moment theory, involving the geometrical
moments, the moment invariants, and the orthogonal
moments. It is impossible for this short Review to cover
all the important moments in detail. Moreover, we have
not included in this Review the works on the speed and
accuracy of computation of the image moments and on
their applications. A large body of excellent Letters and
text books exist in the literature now. A more rigorous,
accurate, and complete mathematical analysis on the
image moments theory has been developed. However,
some fundamental intuitive ideas, such as the use of
low-order radial moments for avoiding information sup-
pression, the definition of the moment invariants in the
polar coordinate system and relation of them to the mo-
ments in the rectangular coordinate system via the com-
plex moments, and the separation of the radial moment
orders from the circular harmonic orders, have been widely
accepted and continuously used in the development of the
image moment-based methods. We proposed a moment
family table and the performance measures for the
orthogonal moments based on the number of zeros, the
uniform distribution of zeros, and the oscillation ampli-
tude variation of the orthogonal polynomials. The image
reconstruction can depend on the choice of moment orders
and on the testing image set so that they can be indirect
measures for the performance.
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